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ABSTRACT

Mevalonate kinase (MVK)catalyses the phosphorylation of mevalonate. Deficiency of MVKis
asodated with two rare periodic fever syndromes, mevalonic aciduria (MA), a severe form and
hyper-Immunoglobulin-D syndrome (HIDS), a milder form. An in silico approach was used to analyse
the physicochemica and structural effects of 47 disease-assodated variants of MVK.A further 20
variants, which are present in human genome databases, were also analysed. Variants associated
with MA are clustered into a“hotspot ‘tonsisting of residues 8-35 and 234-338 and tended to result
in a prediction of severely reduced protein stahility. Four of the uncharaderised variants, p.H24P,
p.GL98R, p. R253W and p.G335S were likely to be assodiated with MA. This method could be used as

the basis for initial predictions of severity when new MVKvariants are dismvered.

Keywords. periodic fever syndrome; mevalonic aciduria; hyper-Immunoglobulin-D syndrome; HIDS

protein stability; disease prediction
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INTRODUCTION

Mevalonate kinase (MVK)deficiency is assaiated with a wide range of systemic diseases ranging
from the most severe form, mevalonic aciduria (MA; OMIM#610377) to a milder form, hyper-
immunoglobulin D syndrome (HIDS OMIM#60920) (Drenth et al. 1999, Haas & Hoffmann 2006,
Houten et al. 2000b). These rare autosomal recessve disorders are caused by a mutation in the MVK
gene, which isfound on the long arm of chromosome 12 (12924) (Haas & Hoffmann 2006 Houten et
al. 200, Houten et al. 20008). Mevalonate kinase (EC2.7.1.36) is an essential enzyme in the
chdesterol pathway (Buhaescu & 1zzadine 2007). It is a dimeric protein that catalyses the ATP-
dependent phosphorylation of mevalonate to 5-phosphomevalonate (Potter & Miziorko 1997). This
step follows the one catalysed by the highly regulated enzyme and statin target, 3-hydroxy-3-
methylglutaryl-CoA (HMG-GoA) redudase (EC1.1.1.34). Although there is no effective treatment for
MVKdeficency, preliminary evidence has shown that Smvastatin, an HMG-CoA redudase inhibitor,

may be useful in treating inflammatory attacks in HHDS(Smon et al. 2004).

MVKis part of the GHMP family of kinases (Bork et al. 1993, Timson 2007). Each subunit has two
domains with the adive site locaed in a cleft at the domain interface (Yang et al. 2002, Fu et al.
2002, Syraja et al. 2007, Fu et al. 2008). The enzyme is dimeric. Thus, mutations causing amino acid
charges at the dimer interface may disrupt dimer formation leading to an inadive or unstable
protein (Fu et al. 2002. The crystal structure of rat mevalonate kinase in complex with MgATP
revealed that an Mg ion is co-ordinated by both B- and y-phosphates of ATPand side chains of Glu-
193 and Ser-146 (Fu et al. 2002). Asp204 was found to make a salt bridge with Lys-13, which
interacts with the y-phosphate (Fu et al. 2002). Lys-13 affects the pK, of the C5hydroxyl of
mevalonate, while Asp-204 abstrads the proton from this hydroxyl. The resulting penta-coordinated
y-phosphoryl group may be stabilized by Mg®*, Lys-13, and Glu-193 (Fu et al. 2002). The structure of
the human MVKenzyme is very similar to the rat one (rmsd 0.81 A) and the mechanism of readion is

expected to be identical with Asp-204 acting as a base in the active site (Fu et al. 2008).
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MA and HIDSare rare autosomal recessive disorders charaderised by recurrent periodic feversand
generalised inflammation (Haas & Hoffmann 2006, Frenkel et al. 2000). Typical symptoms of the
severeform, MA, can indude psychomotor retardation, ataxa, failure to thrive, dysmorphic features
with recurrent episodes of fevers, lymphadenopathy and rashes (Frenkel et al. 2000, van der Burgh
et al. 2013. These symptoms typicdly present in infancy and patients usually die in childhood
(Frenkel et al. 2000). Quffers of MA can be confirmed based on their biochemical, clinica and genetic
data (Drenth et al. 1999. The residud activity of MVKin MA sufferersis below 0.5% leading to a

characterigtic build-up of mevalonic acid (Prietsch et al. 2003).

HIDSis a milder phenotype of MVKdeficiency with more documented cases (Haas & Hoffmann
2006, Frenkel et al. 2000, van der Burgh et al. 2013, Grose 2005). Symptoms usually present in the
first year of life and indude recurrent lifelong episodes of fever, rashes, abdominal pain and
lymphadenopathy (Haas & Hoffmann 2006, Frenkel et al. 2000 McDemott & Frenkel 2001, Haas et
al. 2001, Hoffman et al. 2001). A high level of IgD and IgA accompanies these symptoms and is often
used as a diagnostic confirmation of HIDS(Drenth et al. 1999, Houten et al. 2000b, Buhaescu &
Izzedine 2007). Moreover the residud activity of MVKin HIDSis around 1-20% (Houten et al. 2000b).
HIDScan be distinguished from MA by the lack of abnormal levelsof mevalonic acid present as well
asthe lack of neurologicd manifestations which feature in MA (Hoffman et al. 2001). Furthermore
unlike individuals with MA, people suffering with HIDS do not experience any symptoms between

fever episodes and typicdly have a normal life expectangy (Haas & Hoffmann 2006).

The most frequent mutation associated with HIDSis ¢.1129G>A (rs28934897) resulting in an amino
add change from valine to isoleucine at position 377 (p.V377]) (Quisst et al. 2001). Thisisfound in
approximately 80% of HIDSsuffers and has never been reported in MA (Quisset et al. 2001). MVK
deficiency is particularly common in northern Europe (especially the The Netherlands and France)
but cases have been reported worldwide (Prietsch et al. 2003). Approximately 80 mutations have

been reported to cause mevalonate kinase deficiency (Haas & Hoffmann 2006).
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Overhpping phenotypes of MA and HIDS have been observed in an intermediate form, although few
cases have been documented (Hoffman et al. 2001). However it isimportant to note that the
relationship between mutation and reported phenotype may not always be straightforward.
Phenotypes are classified based on individua dinical observation and can be influenced by
environmental factors; for example, the symptoms of MVK deficiency appear to be amplified by

increased temperature (Houten et al. 2002 Tricarico et al. 2013).

It isnot known precisely how each disease-asociated mutation alters the enzyme structure or how
this contributes to the different levelsof severity or pathology. It isassumed that the residual
adivity of MVKdetermines whether or not a patient has MA or HIDS therefore a mutation
asdated with the severe form must disrupt the enzyme’s structure and function significantly to
decrease its activity below 0.5% At the biochemical levelthisislikely to result from effects on
protein folding and stability. A bioinformatics approach was taken to understand the fundional and
structural contribution of molecular alterations in MVKand how these correlate to the assaiated
severity. This was then applied to variants of MVKwhose disease asciation is currently unknown.
The approaches can be broady arranged into three approactes: sequence and evolutionary
conservation based methods, protein sequence and structure-based methods, and supervised
learning methods. Smilar approaches have been successul in the investigation of type |
galadosemia (galactose 1-phosphate uridylyltransferase deficiency), type Il galactosemia (UDP-
galadose 4'-epimerase deficiency), hyperargininemia (arginase 1 deficiency) and apparent
mineralocarticoid excess (11B3-hydroxysteroid dehydrogenase type 2 deficiency) to provide the basis
for predicting the severity of newly discmvered mutations (Carvalho et al. 2012, Manning et al. 2010,

Facchiano & Marabotti 2010, d'Acierno et al. 2009, d'Acierno et al. 2014, McCorvie & Timson 2013).

MATERALSAND METHODS
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Datasets, sequenceinformation and data analysis

Literature searches were used to identify disease-asdiated variants. Where available, the clinicd
symptoms, observed residual activity of the MVKvariant, any biochemicd analysis (induding any
experimental conditions), environmental factors and the genetic background were noted.
Charaderised variants and uncharacterised missense mutations from exome sequencing were
identified from the databases: NCBIdbSNP (htt p://www. ncbi.nlm.nih.gov/ SNP/), UniProt

(http:// www.uniprot. org), and Infevers (http://fmf.igh.cnrs.fr/ISSAIDY infevers/). Excel (Microsoft)
and GraphPa Prism 5.0 (GraphPad Software) were used to record sores, perform statistica

analysis and obtain graphical representations of the results.

Seondary and tertiary structural investigations

Sructural studies were based on the crystal structure of human MVK(PDB: 2R3V) (Fu et al. 2008).

Sructures were visualised using PyMol (http://www.pymol.com) and were computationally solvated

and energy minimized using YASARA(htt p:// www.yasara.org) (Krieger et al. 2009. Sequence
variations were introduced in silico using the Mutate function in PyMol and these variant forms of
the protein were minimised using YASARA.Thus, all structural comparisons were made using
minimised structures. Each variant’s structure was further analysed using LSSNP/PDB (http:// Is-
snp.icm.jhu.edu/Is-snp-pdb/ main). This tool provided solvent accessbility soores, variant’s position
at domain interface, location in the 3D structure, if it is exposed or buried, the secondary structure
where the variant isfound and a 3D representation of the variant in the structure. The GETAREA
server (http://curie.utmb.edu/ getarea.html) was used to determine the change in surface and

buried atoms from the variant compared to the wild type (Fraczkiewicz & Braun 1998).
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Prediction of the physicochemical effect of each missense mutation on MVKstructure, stability and

function

Bioinformatics tools were used to investigate arange of physicochemical effects of each variant on
MVKs structure and function. The following tools were used to estimate the change in protein
stahility: I-Mutant 3.0 Binary and Ternary classification

(http:// gper2.biocomp.unibo.it/ cg/predictors/ I-Mutant 3.0/ I-Mutant3.0.cgi) (Capriotti et al. 2005,
Capriotti et al. 2006); mCIM (http://b leoberis.bioc.cam.ac.uk/ mcsm/) (Pires et al. 2014); SDM score
(http:// mordred.bioc.cam.ac.uk/~sdm/sdm.php) (Worth et al. 2011, Worth et al. 2007); Mupro
(http:// mupro.proteomics.ics.uci.edu/) (Cheng et al. 2006); iSable score

(http://p redictor.nchu.edu.tw/iSable/) (Chen et al. 2013); PredictS\NP 1.0

(http:// loschmidt.chemi.muni.cz/ predictsnp/) (Bend! et al. 2014); Meta-SNP

(http:// snps.biofold.org/meta-snp/) (Capriotti et al. 2013); KD4V swore

(http://d ecrypthon.igbmc.fr/kd4v) (Lwi et al. 2012).

The tools used to estimate the change in free energy resulting from the point mutations (all
cdculated at pH 7.5, 30 °C) were: I-Mutant 3.0 DDG, SYM3 and SYM2 values (Capriotti et al. 2006);
Fdd-X DDG value (http:// foldx.crg.es) (Schymkowitz et al. 2005); PoRMuSC 2.1

(http://d ezyme.com/) (Dehouck et al. 2011); QUPSAT DDG ((htt p:// cupsat.tu-bs.de) (Parthiban et al.
2006, Parthiban et al. 2007); iSable DDG(Chen et al. 2013); GETAIRA energy change

(http:// curie.utmb.edu/getarea.html) (Fraczkiewicz & Braun 1998).

The tools used to predict change in binding affinity were: mC3M Protein-Protein affinity prediction
(Pres et al. 2014); BeAtMuSC binding affinity prediction and score

(http://b abylone.ulb.ac.be/b eatmusic) (Dehouck et al. 2013. The tools used predict the change in
solvent accessibility were: PORMuSC 2.1 (Dehoudk et al. 2011); QUPRAT RIA ((http:// cupsat.tu-
bs.de) (Parthiban et al. 2007); DM score (Worth et al. 2011, Worth et al. 2007); BeAtMuSC

(Dehouck et al. 2013).
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In addtion, further physicochemical analysis was carried out using SNP effect 4.0 server

(http:// snpeffect.switchlab.org) (DeBaets et al. 2012) which uses four programs to predict the
biochemica effects of missense mutations; TANGO (http:// tango.crg.es/) (Fernandez-Escamilla et al.
2004) which predicts the tendency to aggregate; Fold-X (Schymkowitz et al. 2006) which predicts
charges in stability, WALTZ (http://www.switchlab.org/bioinformatics/ waltz ) (Maurer-Sroh et al.
2010) which predicts the tendency to form amyloids and LIMBO

(http:// www.switchlab.org/bioinformatics/ limbo) (Van Durme et al. 2009 which predicts the ability
to bind chaperones. A estimation of the change in hydrogen bond satisfaction was also carried out
using M (Worth et al. 2011, Worth et al. 2007). The KD4V server (Lwi et al. 2012) provided
additional scoresin the change in size, charge polarity, modifications and hydrophobicity. Change in

hydrophobicity scoreswere cdculated using data from (Black & Mould 1991).

Multiple sequence alignment and evolutionary conservation based methods

Multiple sequence alignment was carried out using Qustal Omega

(http:// www.ebi.ac.uk/ Tools/ msa/clustalo/) (Severset al. 2011) from sequences gathered from
UniProt database (http:// www.uniprot.org). Only those dassified as MVKand with “ r ewed” e
status were used. Atotal of 19 sequences were obtained, which included one from yeast, four from
vertebrates, one from slime mould, one from plarnts, one from Archaea and eleven from eubaderia.
The resulting alignment (Supplementary Hgure S1) was used with the Sorecons server

(https:// www.ebi.ac.uk/ thornton-srv/ databases cgi-bin/valdar/ scorecons_server.pl) based on the
ValdarO1 score (Valdar 2002). The alignment was also used to cdculate the degree of tolerance of
each amino add alteration using the SIH server (http:// sift.jevi.org/) (Kumar et al. 2009 and the
PROVEAN server (http://p rovean.jevi.org/index.php) (Choi et al. 2012), both of which are based on
updated versions of Ensembl gene annotation (GR@37 Ensembl 66) and NCBIdbSNP database

(Build 137).
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Additiona investigations of the tolerance to change at positions which are altered in the disease-
asodated variants was carried out using the tools: LSSNP/PDB (http:// Is-snp.icm.jhu.edu/Is-snp-
pdb/) (Ryan et al. 2009); SNPs& GO (htt p:// snps.biofold.org/ snps-and-go/pages/ help.html)
(Calabrese et al. 2009); PhD-SNP (htt p:// snps.biofold.org/phd-snp/phd-snp.html) (Capriotti et al.
2006); PANTHER (http:// www.pantherdb.org/tools csanpScoreForm.jsp) (Brunham et al. 2005);
GenMAPP (htt p://www.genmapp.org) (Salomonis et al. 2007); PdyPhen 2

(http:// genetics.bwh.harvard.edu/pph2/) (Adzhubei et al. 2010, Adzhubei et al. 2013); nsSNP
Analyzer (http:// snparalyzer.uthsc.edu) (Bao et al. 2005); H mutation assessor

(http:// mutationassesor.org/vl) (Revaet al. 2011); KDAV (Lwi et al. 2012); YAE MU2A

(http:// krauthammerlab.med.yale.edu/mu2a) (Gala et al. 2011).

Qupervised learning methods for combined overall predictions of each variant severity

Sipervised learning methods that include avariety of bioinformatics tools to compare variants and
provide an overall prediction on the effect of the variant on the protein’s structure, function and
pathology were used. Programs that provided this overall score, predicting if the mutation was
disease cawsing, damaging, destahilizing or deleterious were: I-Mutant 3.0 Prediction of Disease
(Capriotti et al. 2006); SFT (Kumar et al. 2009; PROEAN prediction (Choi et al. 2012); PdyPhen 2
prediction (Adzhubei et al. 2013); mC3IM prediction (Pires et al. 2014); SNAP prediction

(https:// www.rostlab.org/ services/ snap/) (Bromberg & Rost 2007); PANTHER(Brunham et al. 2005);
PhD-S\PP predictor (Capriotti et al. 2006); nsSNP Analyzer (Bao et al. 2005); Mupro prediction (Cheng
et al. 2006); PAPMudC 2.1 (Denouck et al. 2011); QUPSAT (Pathiban et al. 2007); iSable (Chen et al.
2013); PredictSNP (Bend! et al. 2014); MAPP (Salomonis et al. 2007); Meta-S\P (Capriotti et al.

2013); H mutation asessor (Revaet al. 2011); BeAtMuSC (Dehouck et al. 2013).
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RESULTS AND DISCUSSON

MVKalterations associated with MA tend to located in the central cleft, near the active site

Literature and database searches identified forty-seven MVKmutations for which there was
sufficient biochemical and clinicd information to be included in this study. Four of these were
asodated with the intermediate severity MVKdeficiency, twelve with the severe form (MA) and the
remainder with the mild form (HIDS). The location of the charges in the protein sequence showed
that there was a relationship between the position of the variant and assadiated severity, with
severeand intermediate mutations only occurring between amino acid positions 8-35 and 234-338
(Hgure 1). These two sequences are located around the inside of the protein s cleft close to the
adive site and around the domain interface. Four of the variations associated with the severe form
(p.L264F, p.L265P, p.1268H and p.N301T) occu in a-helices at the dimer interface. Toour
knowledge there is no published information on the effect of these (or other) mutations on the
ability of MVKto dimerise; nor is there any information on whether, or not, dimerization is required
for full activity of human MVK. However, MVKfrom some bacteria is monomeric, suggesting that
the oligomeric state may have limited impad on activity (Hedl & Rodwell 2004, Voynova et al. 2004).
The alterations associated with HIDSwere more widespread throughout the MVK structure (Fgure
1). The position of the variants in the 3D structure from LSSNPPDB showed that the majority of
variants asodiated with severeand intermediate forms of the disease affected buried residues,
while the variants assaiated with HIDSaffected a mixture of buried, intermediate and exposed

residues.

Computationa andysis tends to place the MVKvariants into two groups

Allthe results from the physicochemica analysis of the disease-ascdiated and uncharacterised

variants are given in Supplementary Table SlL. There was a tendency to predict decreasing structural
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stability with increasing severity of the disease-assodated variants. The programs that gave this
trend with were: I-Mutant DDG, solvent accessbility, FOLD-X, mCSM stability, Mupro, PoORMuSC 2.1,
BeAtMuUSC, QUPSAT (RRA), iSable DDG, GETAREASDM, BETMUSIC, and KD4V. The change in
hydrophobicity tended to increase with severity (data not shown). In the majority of cases, however,
there was no statistical significance (p>0.05) when the three groups (mild, intermediate and severe)
were compared. In general, alterations at more highly conserved residues were more likely to result
in severe forms of MVKdeficiency. This result was supported by predictions from: POLYPHEN-2,
SAM, SOORECOIS PHD-SNP, SNP&GO, PANTHER,MAPP, Fkmutant and 4D4V WT residue
representation. However, like the physiochemicd scores, there was no significant difference
between the scores when comparing the results from the three groups with the majority of the

programs (data not shown).

Qupervised learning methods predict effectson MVKstahility using a combination of methods

Programs that used supervised learning methods for an overall prediction were used to predict each
variant’s effect on MVKs stahility. It should be noted that this approach is based on the assumption
that all the prediction tools are equaly good. However, the percentage score provides an overall
consensus which has been found to be more accurate than only using one or two tools (Zhao et al,
2014). The results in Supplementary Table & are based on 28 prediction tools and show that, in
general, the percentage of tools predicting a reduction in MVK stability dightly increases with
increasing severity. For each group the percentage predicting a decrease ranged from: 28.6-89.3
(mild), 53.6-89.3 (intermediate) and 64.3-92.9 (severe). Although there is an increasing trend, the
discrimination between groups was not sufficient to make meaningful predictions about variants of

unknown severity.
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The intermediate form was not well detected by these methods

Across the three different prediction methods, the intermediate group was not well discriminated.
In general it showed results similar to, or greater than, the severe group (Supplementary Table SJ).
This suggests that either these methods are not sufficiently discriminating or that the intermediate
group would be better considered as part of the severe group. Combining these two groups enabled
discrimination between the combined intermediate/severe group and the mild group on the basis of
the physicochemica scores (Fgure 2). Therefore, in developing a predictive framework, these two

groups were considered together.

Towards a predictive framework: four key postulates

Based on the data (summarised in Supplementary Table S2), four postulates were made:

1. The decrease in enzyme activity is correlated with severity of disease. In the majority of

cases, this decrease results from improper folding of the protein.

2. Changesto highly conserved residues are more likely to result in improper folding.

3. Intermediate mutations should be treated with the severe group due to their similarity to

this group.

4. Fa asevere or intermediate phenotype to occu, the mutation islikely to cause achange in
the “hotspot” region, identified from structural analysis, i.e. around residues 8-35 and 234-

338 in the protein sequence.
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Prediction of the likely clinical severity assaciated with uncharacterised variants

There are a number of variants which have been identified through genome and exome sequencing
projects, but have not yet been characterised in terms of their assaiated disease severity. Applying
the postulates above, four of these variants are predicted to be associated with the intermediate or
severeform (MA). These are p.H24P, p.G198R, p.R253W and p.G335S (Supplementary Table S3.
Three of these uncharaderised variants were predicted to cause either the mild form (HIDS) or no
disease and the rest were predicted to be assaiated with HIDS(Supplementary Table S3).
Experimental testing will be necessary to confirm these predictions. Molecular dynamics simulations
may be valuable in explaining why disease-associated variants affect protein stability and would also
be useful in investigating the properties of these uncharaderised variants. It isfurther
hypothesised that the MVKvariants which are predicted to be associated with MA will have very low
adivities and stabilities in vitro. It isalso expected that cells homozygous for the corresponding

mutations are likely to be deficient in the mevalonate pathway and will accumulate mevalonate.

Conclusions

The analyses presented here suggest that point mutations in the MVKgene which result in changes
to the protein coding sequence subtly alter the structure and stability of MVK,thus affecting it
adivity. These effects are greater when the charge occus in a well-conserved residue. Variants
asdated with MA generally result in changes to the highly conserved “hotspot ‘fegion and also
result in greater changesto stahility and other biophysical parameters. In addition to providing a
predictive framework, these results also suggest that pharmacdogica interventions to stabilise the
MVKprotein (“small molecule chaperone therapy” Jnay be possible in the treatment of MA and the

alleviation of the feverish episodes in HIDS
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FHgure legends

Haurel: Sructure of human mevalonate kinase showing the location of changes resulting from
disease-ascdiated mutations. (a) The dimeric structure of human MVKshowing the N- and G
termini and active site cleft of one of the subunits.  (b) The sequence of human MVK (GenBank:
NP_001107657) showing residues which when altered are assaiated with mild (green),

intermediate (magenta) and severe (red) forms of MVKdeficiency. (c) These residues mapped onto
the three dimensional structure of a single MVKsubunit (left). Eah residue asocdiated with disease
is shown as a space-filled model. Those assaiated with the severeform (MA) are coloured red.
Magenta indicates residues which are altered in the intermediate form and green residues altered in
the mild form (HIDS). The “hot-spot  which includes all the alterations assaiated with MA is
coloured blue in the right hand figure. Pats (a) and (c) were produced using PyMol and (PDB: 2R3V)

(Fu et al. 2008).

Faure2: When combined, the intermediate and severe groups of variants show a statisticdly

significart difference from the mild variants in the mean physicochemical sore (p=0.038).

Supporting Information

SQupplementary FgureSL: A sequence alignment generated in Custal Omega (see Materials and

Methods) of 19 verified MVK protein sequences. This alignment was used in analysis of sequence

Supplementary TableS2: The percentage of predictions from 28 prediction tools (see Materials and
Methods) for MK variants predicting a decrease, increase or neutral change in stahbility. Whether

or not the residue occus in the structural “hotspo t i$also tabuated.
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corservation.

Qupplementary TableSl: The complete dataset from the various prediction tools used in this study.
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Supplementary TahleS3: Predicted severitiesasociated with currently uncharacterised variants.

Variants were predicted to be intermediate/ severe (I/'S), mild (M) and mild/neutral (M/N) based on
whether, or not, the altered residue was in the “hotspot” and whether the variant was predicted to

be substantially less stable than wild-type.

Supplementary TableS2: The percentage of predictions from 28 prediction tools (see Materials and
Methods) for MK variants predicting a decrease, increase or neutral change in stahility. Whether

or not the residue occus in the structural “hotspo t i$also tabuated.
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