
Accelerated Optimal Topology Search for Two-hidden-

layer Feedforward Neural Networks

Alan J Thomas*, Simon D Walters, Miltos Petridis, Saeed Malekshahi Gheytassi,

Robert E Morgan

School of Computing Engineering and Mathematics, University of Brighton, United Kingdom.

{a.j.thomas*,s.d.walters,m.petridis,

m.s.malekshahi,r.morgan1}@brighton.ac.uk

Abstract. Two-hidden-layer feedforward neural networks are investigated for

the existence of an optimal hidden node ratio. In the experiments, the heuristic

�� = ���(0.5�
 + 1), where �� is the number of nodes in the first hidden layer

and �
 is the total number of hidden nodes, found networks with generalisation

errors, on average, just 0.023%-0.056% greater than those found by exhaustive

search. This reduced the complexity of an exhaustive search from quadratic, to

linear in �
, with very little penalty. Further reductions in search complexity to

logarithmic could be possible using existing methods developed by the Authors.

Keywords: two-hidden-layer feedforward · ANN · exhaustive search · optimal

topology · optimal node ratio · Heurix · universal function approximation

1 Introduction

Function approximators are an important class of artificial neural networks. Since it

was shown that multilayer feedforward neural networks with as few as a single hidden

layer are universal function approximators [1], they have enjoyed an upsurge of popu-

larity in diverse domains. In the automotive arena, they are used increasingly to predict

engine emissions, and typically involve an exhaustive or ‘trial and error’ search through

one or two hidden layers to find the optimal topology - though the former is by far the

most common [2, 3, 4, 5]. This could well be because of the prohibitive time required

to conduct an exhaustive quadratic search through two hidden layers. This paper ad-

dresses the question: ‘Does there exist an optimal ratio of nodes between the first and

second hidden layers of a two-hidden-layer neural network (TLFN)?’ If so, this could

be combined with existing network topology optimisation techniques to reduce their

complexity. For example, the complexity of an exhaustive search for a TLFN would be

reduced from a quadratic search (��) to a linear search (�), diagonally along the

optimal ratio line.

In this paper, a heuristic relationship between the total number of hidden nodes, �

and the number of nodes in the first hidden layer �� is proposed. TLFNs created using

this heuristic are compared with the best of those found by searching all possible com-

binations of nodes in the first and second hidden layers (�� and �� respectively) such

that �
 = �� + ��. Although this heuristic is not guaranteed to produce the best node

ratio, in our experiments the generalisation error is only 0.023% − 0.056% greater than

the best of any other node combination.

2 Problem Description

When designing a feedforward neural network, the number of inputs and outputs are

easily selected as these are determined by the application. The number of hidden layers

required depends on the complexity of the function. For functions which are linearly

separable, no hidden layers are required at all. Given a sufficiently large number of

hidden units, a single layer will suffice [1], however two hidden layers can often

achieve better result than a single layer [6]. In the Authors’ own experience, node for

node, a TLFN will give a better generalisation capability than an single-hidden-layer

feedforward neural network (SLFN) in many cases.

The most challenging and time consuming aspect of the design is choosing the opti-

mal number of hidden nodes. It is assumed here that ‘optimal’ means ‘yielding the best

generalisation capability’. Too few hidden nodes, and the network simply will not have

the capacity to solve the problem. Conversely, too many, and the network will memo-

rise noise within the training data, leading to poor generalisation capability. Thus the

challenge is finding a network which achieves the best balance, ideally in a reasonable

time.

3 Related Work

Many optimisation techniques for feedforward neural networks have been proposed

in the literature. These can be broadly summarised as:

3.1 Rules of Thumb

These are generally associated with guessing the best number of hidden nodes for

single-hidden-layer feedforward networks (SLFNs). There do not appear to be any that

pertain to TLFNs.

3.2 Trial and Error

This is a very primitive approach likely to yield extremely sub-optimal results. How-

ever, this term is occasionally applied to an exhaustive search between certain bounds.

In [5], for example, the term is used to describe the search for a TLFN which varies the

number of nodes in each hidden layer between 1 and 20, with a resulting search space

of 400 different topologies.

3.3 Exhaustive Search

This involves training networks with every possible combination of hidden nodes

between 1 and some upper bound, �
, and choosing the network with the best general-

isation performance. Huang and Babri rigorously proved that an SLFN with at most �

hidden neurons can learn �� distinct samples with zero error [7]. Though this gives us

an upper bound on the number of hidden neurons, it also means that at this bound the

network will also overfit by exactly learning the noise within the training set. Thus an

exhaustive search for an SLFN should vary the number of hidden nodes from 1 up to

an absolute maximum of �
 = ��.

Huang later proved that the upper bound on the number of hidden nodes �
 for

TLFNs with sigmoid activation function is given by �
 = 2�(�� + 2)��, where �� is

the number of outputs. These can learn at least �� distinct samples with any degree of

precision [8]. Interestingly, Huang also demonstrated that the storage capacity can be

increased by reducing the number of outputs, which is probably the best argument for

limiting the number of outputs for function approximation to a single output. With that

in mind, substituting �� = 1 we have �
 = �12��. This is ���/12 times lower than that

of an SLFN. This means that an exhaustive search for a TLFN with for example 10,000

training samples, would have an upper bound which is 29 times lower than for an SLFN.

With exhaustive searches, several networks of each topology need to be trained to

filter out networks where the initial random weight allocation might cause the training

to get trapped in local minima. Because of this effect, it is unlikely that the actual global

optimum will be found. Since this depends on all the weights being exactly correct, the

probability of finding the global optimum will increase with the number of weights.

The result is that the ‘optimal’ topology returned by an exhaustive search will be dif-

ferent on successive searches. For SLFNs, the complexity of an exhaustive search is

linear (�), whereas for TLFNs, it is quadratic (��).

3.4 Growing Algorithms

At their simplest, these are similar to exhaustive searches. They generally start with

a single hidden node, and increase the number of hidden nodes one by one until the

improvement in generalisation error is negligible. Using this approach with TLFNs is

problematic because the sudden variation of node ratio on new rows will result in spikes

on the generalisation landscape resulting in premature termination. Other types of

growing algorithms combine simultaneous growing and training. These can be classi-

fied as non-evolutionary [9], and evolutionary [10]. The latter are notoriously time con-

suming.

3.5 Pruning Algorithms

With this approach, an oversized network is trained and the relative importance of

the weights subsequently analysed. The least important weights are removed and the

network retrained. The problem with these is determining what constitutes an oversized

network in the first instance, and their time complexity. Brute force approaches which

set each weight in turn to zero and eliminates it if it has a negligible effect on the gen-

eralisation error. These have a complexity of (����), where �� is the number of

samples in the training set, and � is the number of weights in the original oversized

network [11].

3.6 Heuristic Algorithms

These estimate the optimal number of hidden nodes by sampling a sub-set of topol-

ogies and using curve fitting techniques to predict the optimum topology. A system

previously developed by the Authors [12] can create SLFNs with a generalisation error

of as little as 0.4% greater than those found by exhaustive search with a complexity of

(����(�)).

3.7 Proposed Method

This is not a separate method per se, but rather a heuristic to be used in conjunction

with another optimisation method. If there exists an ‘optimal’ node ratio for a TLFN,

then it effectively reduces its complexity to that of an SLFN.

4 Experiments

All experiments were carried out using the Matlab R2014b environment. The net-

works were created using the Neural Network Toolbox ‘fitnet’ function to generate the

SLFNs and TLFNs where appropriate. Two separate datasets were used, with different

numbers of inputs. These were trained the Levenberg-Marquardt training function,

‘trainlm’ which is commonly used for function approximation as it has often been found

to yield the best results [2, 3, 4, 5]. For comparison, the second dataset was also trained

with the Scaled Conjugate Gradient training function ‘trainscg’.

4.1 Data Preparation

The datasets were chosen because of their availability in the public domain, allowing

the findings to be independently verified. In all cases, the data is split into three subsets:

Training (80%), Validation (10%) and Test (10%). The Validation set is used to stop

the training process when the validation error starts to rise, and the Test set is used

exclusively as an estimate of the generalisation error.

For any given dataset, exactly the same subsets were used for every single network

created in the experiment. By eliminating any bias in the error surface that may have

resulted from a different random split for each network, it was ensured that they were

all competing on the same playing field. The only random element at play was thus the

initial randomisation of the weights. This initial starting point determines which local

minimum in the error surface the training might get stuck in and thus has a direct impact

on the generalisation error. For complex error surfaces, it is extremely unlikely that the

global minimum will be found.

Dataset 1. The ‘engine_data’ (available in Matlab), consists of 1199 samples organised

as two inputs (fuel and speed) and two targets (torque and NOx). These were reorgan-

ised to use torque as a third input, with a single output, NOx. They were subsequently

split into Training, Validation and Test subsets (959, 120, and 120 samples, respec-

tively).

Dataset 2. The NASA Airfoil Self-Noise dataset, available from the UCI Machine

Learning Repository [13]. This consists of 1503 samples with five inputs: Frequency

(Hz), Angle of attack (°), Chord length (m), Free-stream velocity (m/s), and Suction

side displacement thickness (m). It has a single output, scaled sound pressure level (dB).

These were split into Training, Validation and Test subsets (1201, 151 and 151 samples,

respectively).

4.2 Training Algorithms

In all cases, data preprocessing was ‘mapminmax’ for both inputs and outputs, the

transfer function was ‘tansig’ and the error function for training was ‘mse’. However,

the generalisation error in the experiments was reported as the normalised root mean

squared error (NRMSE), which is given by:

 ����� = �
 !"#$% !"&'

(∑ (&% !&)*'&+,
-. (1)

where �� represents the number of samples, /!0 is the target value, and /0 is the actual

value.

Training Algorithm 1. Levenberg-Marquardt training algorithm ‘trainlm’ using de-

fault training parameters: 1000 epochs, training goal of 0, minimum gradient of 10%1,

6 validation failures, 2 = 0.001, 2345 = 0.1, 2065 = 10 and 2789 = 10%�:.

Training Algorithm 2. Scaled Conjugate Gradient training algorithm ‘trainscg’ using

default parameters: 1000 epochs, training goal of 0, minimum gradient of 10%;, 6 val-

idation failures, < = 5 × 10%>, and ? = 5 × 10%1.

5 Experimental Method

Three separate domains were tested:

• Domain 1 - Dataset 1 using Training Algorithm 1, with the generalisation error av-

eraged over 100 rounds of Fig. 1.

• Domain 2 – Dataset 2 using Training Algorithm 1, with the generalisation error av-

eraged over 100 rounds of Fig. 1.

• Domain 3 – Dataset 2 using Training Algorithm 2, with the generalisation error av-

eraged over 300 rounds of Fig. 1. The number of rounds were increased here because

of the higher variance in generalisation error when using Algorithm 2.

Within these domains, a number of experiments were carried out each with a con-

stant total number of hidden nodes:

 �
 = �� + �� (2)

where �� and �� are the number of nodes in hidden layers 1 and 2 respectively. The

values of �
 chosen for these experiments were given by the set:

 �
 = {34, 20, 16, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3} . (3)

For each value of �
, TLFNs were created using all possible combinations of �� and

�� satisfying (2). For example if �
 = 4, �� = {1,2,3} and �� = {3,2,1}. This yielded

3 possible networks with topologies �:: 1: 3: ��, �:: 2: 2: �� and �:: 3: 1: ��. To reduce

the effect that the random initial weights have on the generalisation error, 100 networks

of each topology were created, and the NRMSE of each calculated from (1). The gen-

eralisation errors of the best generalisers (those with the minimum NRMSE on the test

set) formed the results of a single round. This is shown in the pseudo-code in Fig. 1,

which from any given �
, returns an array, J, length �
 − 1, indexed by the number of

nodes in the first hidden layer.

function e = singleRound(nh)

 for n1 = 1 to nh-1 do

 n2 = nh -- n1 % Calculate n2

 % create and train 100 networks recording NRMSE

 for run = 1 to 100 do

 net = createNetwork(n1,n2)

 nrmse[run] = trainNetwork(net)

 end do

 e[n1] = min(nrmse) % Calculate winner’s error

 end do

 return e

end function

Fig. 1. Pseudo-code for a single round

The array, J, was then averaged over 100, 100, and 300 of these rounds for domains 1,

2 and 3, respectively. This was repeated for every value of �
 within the set defined by

(3).

6 Results and Discussion

6.1 Optimal Node Ratio Investigation

The results were not at all as expected. In the preliminary investigative experiments

with Domain 1, the median NRMSE was used instead of the minimum to determine the

winner, and 200 rounds were used. The contents of the arrays, J, were displayed along

the y-axis, and their indices (representing the values of ��) were displayed as an offset

from 0.5�
 along the x-axis. In other words, the x-axis = �� − 0.5�
 as this was where

the optimum, if it existed, was expected to lie. However, there seemed a marked sym-

metry in the region bounded by �� = 4 and �� = 2 (narrow dash) and centred on

0.5�
 + 1 (wide dash) as shown in Fig. 2. From left to centre, this shows a series of

contour lines of decreasing constant values of �
 represented by the set in (3). The

‘sweet spot’ seemed to imply that the number of nodes in the first hidden layer should

be greater than 3 and those in the second layer should be greater than 1. Since the dataset

had 3 inputs and 1 output, it was suspected at this stage that the sweet spot might be

governed by the number of inputs and outputs.

Fig. 2. Initial Domain 1 experiments using average median NRMSE

The main investigation tested whether �� = 0.5�
 + 1 could also be used to de-

scribe the optimum for other datasets and training algorithms. Since �
 can be either

even or odd, rounding down was used as a heuristic for the optimal value of ��, i.e:

 ��(KLM) = ���(0.5�
 + 1) (4)

As a measure of the accuracy of this prediction, the root mean square difference

(rmsd) between the observed minimum generalisation errors, and those obtained using

node ratio (4) were calculated. In the preliminary case above, this is less than 0.011%.

0%

2%

4%

6%

8%

10%

12%

14%

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
v

e
ra

g
e

 g
e

n
e

ra
li

sa
ti

o
n

 e
rr

o
r

(m
e

d
ia

n
 N

R
M

S
E

)

Hidden layer 1 nodes offset (n1 - 0.5nh)

n2 = 2n1 = 4

In the main body of experiments, each round searched for the networks with the

minimum NRMSE (as described in Fig. 1). In this respect, a single round was more

representative of an actual exhaustive search for the best generaliser, and multiple

rounds could be considered as multiple exhaustive searches. The results, which are

shown graphically in Figs. 3-5, show the averages over multiple exhaustive searches

(100 for Domains 1-2, and 300 for Domain 3).

Fig. 3. Domain 1 - Engine Data with Trainlm

Fig. 4. Domain 2 - Airfoil Self-Noise with Trainlm

0%

2%

4%

6%

8%

10%

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
v

e
ra

g
e

 g
e

n
e

ra
li

sa
ti

o
n

 e
rr

o
r

(m
in

 N
R

M
S

E
)

Hidden layer 1 nodes offset (n1 - 0.5nh)

n2 = 2n1 = 4

2%

4%

6%

8%

10%

12%

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
v

e
ra

g
e

 g
e

n
e

ra
li

sa
ti

o
n

 e
rr

o
r

(m
in

 N
R

M
S

E
)

Hidden layer 1 nodes offset (n1 - 0.5nh)

n2 = 2n1 = 4

Fig. 5. Domain 3 – Airfoil Self-Noise with Trainscg

The sweet spot is still there in all three cases, although for Domain 1, it not as clearly

defined as in the initial experiments, and it seems to lean slightly to the right. Since the

number of inputs, the data, and the training algorithm have varied across the three do-

mains, it seems independent of all three within the scope of this investigation.

Table 1. Comparison of Predicted and Observed Best Generalisers.

NO

Domain 1 NRMSE

(%)

Domain 2 NRMSE

(%)

Domain 3 NRMSE

(%)

PQRS PTUN VP PQRS PTUN VP PQRS PTUN VP

3 7.12 7.12 0 10.48 10.48 0 10.98 10.98 0

4 5.33 5.33 0 8.77 8.19 0.584 10.59 10.59 0

5 3.80 3.80 0 6.38 6.38 0 10.11 10.11 0

6 3.21 3.21 0 5.49 5.49 0 9.55 9.55 0

7 2.76 2.61 0.155 5.11 5.06 0.049 9.12 9.12 0

8 2.36 2.34 0.022 4.74 4.74 0 8.63 8.63 0

9 2.18 2.10 0.070 4.53 4.52 0.008 8.35 8.35 0

10 1.95 1.95 0 4.33 4.33 0 8.16 8.13 0.0270

11 1.80 1.77 0.032 4.16 4.14 0.026 7.90 7.90 0.0074

12 1.68 1.64 0.042 4.00 4.00 0 7.81 7.81 0

13 1.55 1.53 0.027 3.87 3.87 0 7.65 7.63 0.0224

14 1.47 1.46 0.012 3.75 3.75 0 7.50 7.50 0

16 1.32 1.31 0.014 3.57 3.56 0.008 7.47 7.37 0.0993

20 1.13 1.13 0 3.33 3.29 0.035 7.17 7.16 0.0049

34 1.04 0.98 0.067 3.03 2.98 0.042 7.19 7.10 0.0894

6%

7%

8%

9%

10%

11%

12%

13%

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
v

e
ra

g
e

 g
e

n
e

ra
li

sa
ti

o
n

 e
rr

o
r

(m
in

 N
R

M
S

E
)

Hidden layer 1 nodes offset (n1 - 0.5nh)

n2 = 2
n1 = 4

In Table 1, for each value of �
 the average minimum generalisation errors are listed

as a percentage for each of the three domains. In this table JWXY represents the error at

the optimum number of nodes calculated from (4), J706 is the observed minimum gen-

eralisation error obtained. The error difference is also shown, where ZJ = JWXY − J706.

The root mean square difference (rmsd) between these are shown in Table 2. Since

there is an outlier in Domain 2 for �
 = 4, which is outside the sweet spot, the rmsd

solely within the sweet spot is also included.

Table 2. rmsd between Predicted and Observed Best Generalisers

Domain Domain 1 Domain 2 Domain 3

rmsd (all) 0.050% 0.152% 0.036%

rmsd (sweet spot) 0.056% 0.023% 0.040%

These results show that although a linear search along (4) is not guaranteed to find

the best generalisers (but then neither is a an exhaustive quadratic search), it will find

networks within 0.023% - 0.056% of these on average.

6.2 Comparison with SLFNs

In this section, the performance of the TLFNs using the optimal node ratio described

by (4) were compared with SLFNs with the same number of hidden nodes for each of

the three Domains. The results are shown in Fig. 6.

Fig. 6. Node for Node Comparison of TLFNs and SLFNs.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

0 5 10 15 20 25 30 35 40 45

A
v

e
ra

g
e

 g
e

n
e

ra
li

sa
ti

o
n

 e
rr

o
r

(m
in

 N
R

M
S

E
)

Total number of hidden nodes (nh)

Domain 1 TLFN
Domain 1 SLFN
Domain 2 SLFN
Domain 2 TLFN
Domain 3 SLFN
Domain 3 TLFN

In all three domains, there are advantages to using an optimal TLFN over an SLFN

with the same number of hidden nodes. However, for Domain 1, it appears that the

generalisation errors are about to converge for �
 > 34 nodes. In Domains 2 and 3,

there is no sign of any convergence within the scope of the experiments. The greatest

gain in generalisation error was for Domain 3, which uses the Scaled Conjugate

Gradient algorithm. This is a popular training algorithm for larger numbers of hidden

nodes as it is much faster than the Levenberg-Marquardt algorithm, since the latter‘s

training time scales exponentially with the number of hidden nodes. An interesting

feature is that for Domains 1 and 2, which both use the Levenberg-Marquardt

algorithm, the generalisation errors cross over at �
 = 5, above which TLFNs

outperform SLFNs. Coincidentally, �
 = 6 is the apex of the perceived sweet spot in

these experiments. It is unclear at this stage whether the two are related.

7 Conclusions and Further Work

This paper set out to answer the question ‘Does there exist an optimal ratio of nodes

between the first and second hidden layers of a two-hidden-layer neural network

(TLFN)?’ Based on the domains tested in the investigation, for �
 > 5, this can be de-

scribed by the relationship �� = 0.5�
 + 1, or alternatively �� = �� + 2. However, a

broader investigation of this hypothesis with different domains is recommended as the

subject of future work. In the course of this investigation, a linear search through �

using the heuristic: �� = ���(0.5�
 + 1), �� = �
 − ��, found networks with a gener-

alisation error of, on average, as little as 0.023% to 0.056% greater than that of the best

generalisers. Although this heuristic did not guarantee that the absolute best generaliser

was found, neither would a quadratic search through two hidden layers. If this is backed

up by further investigation, the implication is that a quadratic search (��) through

�� and �� can be reduced to a linear search (�) through �
. This is a very attractive

proposition for several reasons:

1. First and foremost the search time would be dramatically reduced and would perhaps

encourage engineers to use TLFNs more often.

2. TLFNs can often outperform SLFNs, as was proved in [6], and demonstrated in these

experiments.

3. The upper bound on the number of hidden nodes for a TLFN can be much lower

than that for an SLFN, as proved in [8]. In fact, it is ���/12 times lower. This is

quite significant, especially for large ��. For example, this represents a factor of 29

for �� = 10,000, meaning 29 times fewer candidates need to be tested.

Given the existence of an optimal ratio, could the search complexity be reduced still

further? In a previous paper [12], the Authors have shown that for SLFNs, it is possible

to reduce a linear search (�) to a logarithmic search (����(�)). This is achieved by

sampling the generalisation error at node values �\ = 2\, 0 ≤ ^ ≤ ��, fitting an error

curve of the form J(�
) = _�
%` + a to these samples, and calculating the optimal

number of hidden nodes from its gradient. The choice of gradient determines whether

the network is optimised for speed, accuracy or both.

Fig. 7. Domain 1 TLFN with -0.87% offset

In order for this method to be suitable for TLFNs, their generalisation error must also

follow similar power law curves. The easiest way to check this is to subtract an offset

from the generalisation error and use the trend line feature of the spreadsheet to fit a

power law curve. The offset is adjusted to achieve the best value of ��. Fig. 7 shows

the end of this process for Domain 1. This shows that the generalisation error can be

described by JWXY = 0.3808�
%�.>;b + 0.0087, with a Pearson’s correlation coeffi-

cient of �� = 0.9908 or � = 0.9954. A similar process was carried out on Domains 2

and 3. The results are summarised in Table 3.

Table 3. Curve fitting variables for the three domains.

Domain _ c a �� �

1 0.3808 -1.569 0.0087 0.9908 0.9954

2 0.3854 -1.424 0.0280 0.9936 0.9968

3 0.2407 -1.329 0.0690 0.9420 0.9706

The results are excellent for Domains 1 and 2, which use the Levenberg-Marquardt

training algorithm. This is good news, since this training algorithm yields the best gen-

eralisation error. Based on the experiments carried out in this paper, the Authors are

quite confident that the Heurix system they previously developed [12] will also be suit-

able for TLFNs. Subject to further work, this method could also be used to find near-

optimal TLFNs automatically, with a search complexity of as little as (����(�)).

y = 0.3808x-1.569

R² = 0.9908

0%

1%

2%

3%

4%

5%

6%

7%

0 5 10 15 20 25 30 35

A
v

e
ra

g
e

 g
e

n
e

ra
li

sa
ti

o
n

 e
rr

o
r

(m
in

 N
R

M
S

E
)

Total number of hidden nodes (nh)

8 Addendum

 Since the initial submission of the paper for review, three further domains have been

tested using �
= {1 to14, 16, 20 and 34}, for 100 rounds each. The results are summa-

rised in Table 4.

Table 4. Summary of Further Experiments

Dataset Name Available Inputs Outputs Samples Training rmsd%

chemical_dataset Matlab 8 1 498
trainlm 0.17

trainscg 0.06

delta.elevators Github1 6 1 9,517 trainscg 0.09

These datasets are quite interesting. With the former, over the range tested, SLFNs

outperform TLFNs with respect to their genaralisation capability. In the case of the

latter, there is little or no advantage over a network with no hidden nodes at all. Whilst

the heuristic does still yield reasonable results, this does tend to suggest that cases like

these ought to be tested for in order to obtain efficient network response times from

stimulus to output. This will be the subject of further work.

Acknowledgements. We thank Prof. Martin T. Hagan of Oklahoma State University

for kindly donating the Engine Data Set used in this paper to Matlab. We would also

like to thank Dr. Roberto Lopez of Intelnics (robertolopez@intelnics.com)

for donating the Airfoil Self-Noise dataset; also the dataset’s creators: Thomas F.

Brooks, D. Stuart Pope and Michael A. Marcolini of NASA.

References

1. Hornik, K., Stinchcombe, M., White, H.: Multilayer Feedforward Networks are Universal

Approximators. Neural Netw. 2, 359–366 (1989)

2. Mocanu, F.: On-Board Fuel Identification using Artificial Neural Networks. Int. J. Engines.

7, 937–946 (2014)

3. Yap, W.K., Ho, T., Karri, V.: Exhaust Emissions Control and Engine Parameters optimiza-

tion using Artificial Neural Network Virtual Sensors for a Hydrogen-powered Vehicle. Int.

J. of Hydrogen Energy. 37, 8704–8715 (2012)

4. Roy, S., Banerjee, R., Das, A.K., Bose, P.K.: Development of an ANN based system iden-

tification tool to estimate the performance-emission characteristics of a CRDI assisted CNG

dual fuel diesel engine. J. Nat. Gas Sci. Eng. 21, 147-158 (2014).

5. Taghavifar, H., Taghavifar, H., Mardani, A., Mohebbi, A.: Modeling the impact of in-cylin-

der combustion parameters of DI engines on soot and NOx emissions at rated EGR levels

using ANN approach. Energy Convers Manag. 87, 1–9 (2014)

6. Chester, D.L.: Why Two Hidden Layers are Better than One. In: International Joint Confer-

ence on Neural Networks, vol. 1, pp. 265–268. Laurence Erblaum, New Jersey, (1990)

1 https://github.com/renatopp/arff-

datasets/blob/master/regression/delta.elevators.arff

7. Huang, G-B., Babri, H.A.: Upper Bounds on the Number of Hidden Neurons in Feedforward

Networks with Arbitrary Bounded Nonlinear Activation Functions. IEEE Trans. On Neural

Netw. IEEE Trans On 9, 224–229 (1989)

8. Huang, G-B.: Learning Capability and Storage Capacity of Two-Hidden-Layer Feedforward

Networks. IEEE Trans. On Neural Netw. 14, 274–281 (2003)

9. Kwok, T-Y., Yeung, D-Y.: Constructive Algorithms for Structure Learning in Feedforward

Neural Networks for Regression Problems. IEEE Trans. On Neural Netw. 8, 630–645 (1997)

10. Azzini, A., Tettamanzi, A.G.B.: Evolutionary ANNs: A state of the art survey. Intell. Artif.

5, 19–35 (2011)

11. Reed, R.: Pruning Algorithms – A Survey. IEEE Trans. On Neural Netw. 4, 740–747 (1993)

12. Thomas, A.J., Petridis, M., Walters, S.D., Malekshahi Gheytassi, S., Morgan, R.E.: On Pre-

dicting the Optimal Number of Hidden Nodes. In: 2015 International Conference on Com-

putational Science and Computational Intelligence, pp. 565–570. IEEE CPS (2015)

13. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml

